Hilbert space renormalization for the many-electron problem.

نویسندگان

  • Zhendong Li
  • Garnet Kin-Lic Chan
چکیده

Renormalization is a powerful concept in the many-body problem. Inspired by the highly successful density matrix renormalization group (DMRG) algorithm, and the quantum chemical graphical representation of configuration space, we introduce a new theoretical tool: Hilbert space renormalization, to describe many-electron correlations. While in DMRG, the many-body states in nested Fock subspaces are successively renormalized, in Hilbert space renormalization, many-body states in nested Hilbert subspaces undergo renormalization. This provides a new way to classify and combine configurations. The underlying wavefunction Ansatz, namely, the Hilbert space matrix product state (HS-MPS), has a very rich and flexible mathematical structure. It provides low-rank tensor approximations to any configuration interaction (CI) space through restricting either the "physical indices" or the coupling rules in the HS-MPS. Alternatively, simply truncating the "virtual dimension" of the HS-MPS leads to a family of size-extensive wave function Ansätze that can be used efficiently in variational calculations. We make formal and numerical comparisons between the HS-MPS, the traditional Fock-space MPS used in DMRG, and traditional CI approximations. The analysis and results shed light on fundamental aspects of the efficient representation of many-electron wavefunctions through the renormalization of many-body states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

Application of a renormalization algorithm in Hilbert space to the study of many-body quantum systems

We implement an algorithm which is aimed to reduce the number of basis states spanning the Hilbert space of quantum many-body systems. We test the efficiency of the procedure by working out and analyzing the spectral properties of strongly correlated and frustrated quantum spin systems. The role and importance of symmetries are investigated. PACS numbers: 03.65.-w, 02.70.-c, 68.65.-k, 71.15Nc

متن کامل

Equilibrium problems and fixed point problems for nonspreading-type mappings in hilbert space

In this paper by using the idea of mean convergence, weintroduce an iterative scheme for finding a common element of theset of solutions of an equilibrium problem and the fixed points setof a nonspreading-type mappings in Hilbert space. A strongconvergence theorem of the proposed iterative scheme is establishedunder some control conditions. The main result of this paper extendthe results obtain...

متن کامل

A NUMERICAL RENORMALIZATION GROUP APPROACH FOR AN ELECTRON-PHONON INTERACTION

A finite chain calculation in terms of Hubbard X-operators is explored by setting up a vibronic Harniltonian. The model conveniently transformed into a form so that in the case of strong coupling a numerical renormalization group approach is applicable. To test the technique, a one particle Green function is calculated for the model Harniltonian

متن کامل

Reproducing Kernel Hilbert Space(RKHS) method for solving singular perturbed initial value problem

In this paper, a numerical scheme for solving singular initial/boundary value problems presented.By applying the reproducing kernel Hilbert space method (RKHSM) for solving these problems,this method obtained to approximated solution. Numerical examples are given to demonstrate theaccuracy of the present method. The result obtained by the method and the exact solution are foundto be in good agr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 144 8  شماره 

صفحات  -

تاریخ انتشار 2016